Chapter 14: Chemical Kinetics

Kahoot!

- 1. The rate of a reaction can be increased by: increasing reactant concentrations, increasing temperature, adding a suitable catalyst, all of the above
- 2. Over time, the rate of most chemical reactions tends to _____. Increase, decrease, remain constant, oscillate
- 3. Consider the reaction $A_3 + 3B_2 \rightarrow 3AB_2$. If A_3 consumption is -0.750 <u>M</u>/min, then B_2 consumption is: -0.750 <u>M</u>/min, -0.225 <u>M</u>/min, -0.250 <u>M</u>/min, -2.25 <u>M</u>/min
- 4. If tripling the concentration of reactant A multiplies the rate by a factor of 9, the reaction is _____ order in A. 0, 1, 2, 3
- 5. What are the correct units for k of a 5th order reaction? \underline{M}^{-2} s⁻¹, \underline{M}^{-3} s⁻¹, \underline{M}^{-4} s⁻¹, \underline{M}^{-5} s⁻¹
- 6. If Rate = k[A][B], what is the overall order of this reaction? 1, 2, 3, 4
- 7. If $W + X \rightarrow Y + Z$, Rate = k[W], what is the reaction order for X? 0, 1, 2, 3
- 8. Select the incorrect statement:
 - the orders are not taken from the coefficients in the balanced eqn
 - for a 1st-order reaction, a plot of ln[A] versus t is linear
 - for a 0th-order reaction, a plot of [A] versus t is parabolic
 - the overall order of a 0th order reaction is 0
- The time required for the concentration of a reactant to be reduced by half is _____. Midpoint of the reaction, equivalence point of the reaction, half-rate of the reaction, halflife of the reaction
- 10. If a reaction is 1st order in [A], which of the following will yield a linear plot? [A] vs time, 1/[A] vs time, ln[A] vs time, [A]² vs time
- 11. If a reaction is 2nd order in [A] which of the following will yield a linear plot? [A] vs time, 1/[A] vs time, ln[A] vs time, [A]² vs time
- 12. If a reaction is 0th order in [A] which of the following will yield a linear plot? [A] vs time, 1/[A] vs time, ln[A] vs time, [A]² vs time
- 13. _____ is the minimum energy required for a collision between molecules to generate product. Initial energy, internal energy, external energy, energy of activation
- 14. The rate-determining step is the _____ step in a reaction mechanism. First, last, fastest, slowest
- 15. In a reaction mechanism, a species that is produced then consumed is _____. A byproduct, a catalyst, an intermediate, a reactant
- 16. What is the molecularity of $H_2 + NO \rightarrow N + H_2O$? unimolecular, bimolecular, trimolecular, termolecular
- 17. What is the rate law for elementary step $H_2 + NO \rightarrow N + H_2O$? rate=k[H]²[NO], rate=k[H₂][NO], rate=k[H₂][N][O], rate=k[H]²[NO] [N][H₂O]
- 18. In a reaction mechanism, a species that is consumed then produced is _____. A byproduct, a catalyst, an intermediate, a reactant
- 19. Adding a catalyst increases the rate of a reaction by: increasing molecular velocities, increasing molecular collisions, decreasing the energy of activation, all of the above

Whiteboard Examples

Experimental Determination Example: Determine the rate law, the rate constant and the reaction orders for each reactant and the overall reaction order using the data given below.

Experiment	[A] ₀	[B] ₀	Initial Rate <u>M</u> /s
1	0.100	0.100	4.0 x 10 ⁻⁵
2	0.100	0.200	4.0 x 10 ⁻⁵

3	0.200	0.100	16.0 x 10 ⁻⁵

In other words we want to find, m, n, and k for rate $= k[A]^m[B]^n$ Comparison of 1 & 2 indicates that changes in [B] has no impact – let's prove it

$$\frac{rate_1}{rate_2} = \frac{k[A]_1^m [B]_1^n}{k[A]_2^m [B]_2^n}$$

$$\frac{4.0 \times 10^{-5} \frac{M}{s}}{4.0 \times 10^{-5} \frac{M}{s}} = \frac{k(0.100M)^m (0.100M)^n}{k(0.100M)^m (0.200M)^n}$$

$$1 = \left(\frac{1}{2}\right)^m \to n = 0 \text{ which means } rate = k[A]^m [B]^0 = rate = k[A]^m$$

Now we need to find m by picking two experiments in which [A] changes let's use 2 & 3

$$\frac{rate_2}{rate_3} = \frac{k[A]_2^m}{k[A]_3^m}$$
$$\frac{4.0 \times 10^{-5} \frac{M}{s}}{16.0 \times 10^{-5} \frac{M}{s}} = \frac{k(0.100M)^m}{k(0.200M)^m}$$
$$\frac{1}{4} = \left(\frac{1}{2}\right)^m \to n = 2 \text{ which means } rate = k[A]^2$$

Finally we can use any of the three trials to find our constant k and plug them into the rate law.

$$rate = k [A]^{2}$$

$$4.0 \times 10^{-5} \frac{M}{s} = k (0.100M)^{2} \rightarrow k = \frac{4.0 \times 10^{-5} \frac{M}{s}}{0.0100M^{2}} = 4.0 \times 10^{-3} M^{-1} s^{-1}$$

Putting it all together we get a rate law of:

$$rate = 4.0 \times 10^{-3} M^{-1} s^{-1} [A]^2$$

Example for Fast Equilibrium Approximation: What is the rate law for the mechanism below?

step1: $NO + O_2 \xrightarrow{k_1} NO_3$ (fast) step2: $NO + NO_3 \xrightarrow{k_2} 2NO_2$ (slow)

-- when a fast step preceeds the slow step we assume the fast step is in eq or reversible

step 1:
$$NO + O_2 \xleftarrow{k_1 \\ k_{-1}} NO_3$$
 (fast)

step 2:
$$NO + NO_3 \xrightarrow{k_2} 2NO_2$$
 (slow)

-- we can then write the rate of step1 as rate =k₁[NO][O₂] = k₋₁[NO₃] solving for [NO₃],

$$[NO_3] = \frac{k_1}{k_{-1}} [NO][O_2]$$

-- the rate for step2: rate = $k_2[NO][NO_3]$

we can plug in the relationship from step1 into this equation,

$$rate = k_2[NO] \frac{k_1}{k_{-1}} [NO][O_2] = k_2 \frac{k_1}{k_{-1}} [NO]^2 [O_2]$$

Applied Fast Equilibrium Example: The rate laws for the thermal and photochemical decomposition of NO₂ are different. Which of the following mechanisms are possible for thermal and photochemical rates given the information below?

Thermal rate = k[NO₂]²
Photochemical rate = k[NO₂]
a.) b.) c.)

$$NO_2 \xrightarrow{slow} NO + O$$

 $O + NO_2 \xrightarrow{fast} NO + O_2$
 $NO_2 \xrightarrow{slow} NO + O_2$
 $NO_2 \xrightarrow{fast} NO + NO_3$
 $NO_2 \xrightarrow{fast} NO + O_2$
 $NO_3 \xrightarrow{fast} NO + O_2$
 $NO_3 \xrightarrow{fast} NO + O_2$

a.) rate = $k[NO_2]$ which is consist with the photochemical rate

b.) fast step before slow so we assume eq:

$$NO_{2} + NO_{2} \xleftarrow{k_{1}}{k_{-1}} N_{2}O_{4} \qquad k_{1}[NO_{2}]^{2} = k_{-1}[N_{2}O_{4}] \rightarrow [N_{2}O_{4}] = \frac{k_{1}}{k_{-1}}[NO_{2}]^{2}$$
$$N_{2}O_{4} \xrightarrow{k_{2}} NO + NO_{3} \qquad rate = k_{2}[N_{2}O_{4}] = k_{2}\frac{k_{1}}{k_{-1}}[NO_{2}]^{2}$$

therefore this mechanism is consistent with the thermal rate c.) rate = $k[NO_2]^2$ which is also consistent with the thermal rate